

Concept Element 6

En route: Trajectory Negotiation for

- (a) User-Preferred Separation Assurance
- (b) User-Preferred Local TFM Conformance

Steve Green
NASA Ames Research Center

Distributed Air Ground Traffic Management (DAG-TM)
Industry Workshop
May 23, 2000

- Concept Element Overview
- Research Issues
- Technology Development
- Research Plan
- Additional Presentations

En Route (&Transition): Trajectory Negotiation

for User-preferred Separation and Local-TFM Conformance

Problem:

ATSP cannot accommodate trajectory change requests due to workload; and ATSP-issued clearances often cause excessive deviations for separation assurance or are otherwise not preferred by users

Solution:

User and ATSP negotiate for user-preferred trajectory changes:

- » User formulates preferred trajectory changes, based on the latest Wx, SUA, and local TFM constraints (e.g., STA), and transmits it to the ATSP.
- » ATSP evaluates trajectory change request for approval. If not approved, ATSP transmits additional constraints or issues an alternative trajectory.

Potential Benefits:

- Increased user flexibility / efficiency within the presence of conflicting traffic and dynamic en route constraints
- Shift in ATSP workload
- Reduced excess separation buffers
- Reduced voice communications

"Complementary" Concept Elements

Pursuit of complimentary concept elements will lead to the best solutions in terms of feasibility, cost/benefit, and transition.

Summary of CE-6 Unique Features

- Distributed information and flow conformance
- Responsibilities:
 - ATSP
 - » Separation of all traffic
 - » Flow conformance for all "unequipped" traffic
 - User
 - » 4D conformance (equipped aircraft)

Relevant NAS state information

Data Exchange

AOC Ground links:

Key flight data

Airline preferences

Trajectory Negotiation

Concept Element Overview

Research Issues

- Technology Development
- Research Plan
- Additional Presentations

Research Issues

- Trajectory Orientation (inter/intra-sector coordination)
 - ATSP roles, responsibilities, and procedures
- Trajectory Prediction Accuracy
 - Impact on ATSP DSTs
 - » Conflict Probe Performance (false-alarm and missed-alert rates)
 - » Flow-rate Conformance (uncertainty)
 - Error Sources
 - » Intent [path, speed, altitude profiles]
 - » Winds
- ATSP Decision Support Tool (DST) Capability
 - Flow-rate conformance
 - Integration of flow-rate conformance planning with CD&R

Inter-sector Coordination

(New ATM Procedures)

- Current ATM (Sector Oriented)
 - R-side issues clearances
 - » Tactical in nature
 - D-side looks upstream
 - » Strategic planning to adjust incoming traffic

Interruptions result

- Future ATM (Trajectory Oriented)
 - Strategic trajectory planning:
 - » Longer time horizon (more strategic)
 - » Accounts for downstream constraints
 - Conflicts
 - Merges
 - MIT / metering

ATSP DST Capabilities

Conflict Resolution Vector "Tactical" Delay Vectors • Large vectors (more fuel/work) • Conflict Probe lacks "delay intent"

Flow-rate conformance tools integrated with Conflict Probe

- Speed control (less fuel/work):
- One action solves conflict & delay

Today

Future

- Concept Element Overview
- Research Issues
- Technology Development
 - Research Plan
 - Additional Presentations

Technology Development

Flight Deck Automation

CTAS-based
ATSP DST Automation
(support sector operations)

En route Descent Advisor (EDA)

- Concept Element Overview
- Research Issues
- Technology Development
- Research Plan
 - Additional Presentations

Research & Development Status

- Initial concepts defined and explored for data exchange and trajectory negotiation
 - integration of 4-D ATSP advisories with 4-D FMS guidance and control
 - 4-D trajectory negotiation between an FMS and ATSP automation
 - air/ground information exchange for calibrating and improving the accuracy of ATSP and FMS trajectory predictions
- Studies on trajectory prediction and conformance
 - conformance accuracy of actual aircraft trajectories with ATSP predictions, for both FMS and non-FMS equipped aircraft
 - availability of pre-departure information from user systems for use in improving ATSP trajectory predictions
 - current wind prediction accuracy and potential ATM DST performance improvements through downlink of aircraft wind measurements

Session Presentations

- Kenneth Leiden, Micro Analysis & Design "Trajectory Orientation"
- Gene Wilhelm, MITRE/CAASD
 "Problem Resolution Support for the En route Sector Team"

Rich Coppenbarger, NASA
 "Trajectory Negotiation and En route Data Exchange"

Transitional and Constrained En route Airspace

Integration of Flow-rate Conformance and Separation Assurance

Mapping of En route Concept Elements 5-8

TFM = Traffic Flow Management

Technology Development

CTAS-based
ATSP DST Automation
(support sector operations)

En route Descent Advisor (EDA)